
Tutorial: A Flow-Problem Solver

J. Antoon van Hooft (j.a.v.hooftAgmail.com)

12-Aug-2023

Contents
Code a simple flow solver 3

Pre-requisites . 3
Chapter 0: systems check . 4

1. The equations for fluid motion 5
The goal of a flow solver . 5
The equations for fluid motion . 5
The goal of our flow solver . 6

2. The method of lines 7
Practice with an example . 7

3. Finite differences 12
A test for finite differencing . 14
The code in solver.c is getting messy. 15

4. The advection term 18
Tracer advection . 18
Computing the advection term . 18

5. Antre’acte: Visualization 20
The .ppm file format . 20
Movie maker . 21

6. Testing the tracer_advection() function 24
A qualitative test . 24
(1) A quantitative test . 28
(2) A Well-behaved solver? . 28

7. The viscous term 30
A stability criterion . 32
Testing . 32

8. Antre’acte: A Poisson-problem solver 35
Poisson’s equation . 35
A numerical solving strategy . 35
A criterion to stop sweeping . 38
Solving for ∇ϕ . 39

1

9. The pressure-gradient force 41
A projection method . 41
Chorin’s projection method . 42

10. A Navier-Stokes problem solver 45
A time stepping function . 45
Two tests . 46
Congratulations! . 52

11. Some improved functionalities 53
(1 and 2) A tracer field and a buoyancy field . 53
(3) The User interface . 53
Finally, . 55

12. A gallery of fluid motion 56
A Kelvin-Helmholtz instability . 56
Decaying two-dimensional turbulence . 57
Colliding dipolar vortices . 58
Vortex rebound from a wall . 59
Rising warm plume . 61
A Rayleigh-Taylor instability . 62

13. The good, the bad and the ugly 64
The good . 64
The bad . 64
The ugly . 64
What do other solvers do different? . 64

PDF note There exists a web-version of this document: https://www.antoonvanhooft.nl/min_ns/i
ntro. Apart from formatting differences, the movies shown there are replaced here with images of their
last frame.

2

https://www.antoonvanhooft.nl/min_ns/intro
https://www.antoonvanhooft.nl/min_ns/intro

Code a simple flow solver
Computational analysis of flow problems has become an important piece of equipment in the toolbox
for science and engineering. The problem of finding approximate solutions to the equations for fluid
flow may be reduced to evaluating a numerical recipe, following from a suitable discretization for the
problem. These pages aim to provide a tutorial-styled course on numerical solvers for flow problems. It
is not only a step-by-step guide on how to write a flow solver in the C-programming language, also,
a discussion on the various solver-design choices is included. C is chosen as it is the perfect didactic
language for learning how to program due to its explicit and strict syntax.

Figure 1: An example result of our effors; a movie showing the flow evolution by drawing the vorticity
field over time

Pre-requisites
Apart from time, interest and a good spirit, a few easier-to-come-by assets are needed to follow along
with this course. First, you will need to have a computer that provides you with a C compiler. On a
Linux system you may open a terminal-emulator (terminal) and type
$ gcc -v

and see something like,
Using built-in specs.
...
gcc version 8.3.0 (Debian 8.3.0-6)

Otherwise you can install it on a Debian-based distro,
$ sudo apt install gcc

If you do not know what the above means, please consult the internet and search for “Install C compiler

3

on your OS”, where you replace the italicized text (your OS) with the name of your operating system.
From hereon, I will assume the C compiler is called gcc, although (like always) worthwhile alternatives
exists. Furthermore, a so-called text editor is needed. This is a program that lets you write a plain
text file. Examples include atom, vim and emacs. The course will mainly go between writing in the
editor and typing commands in a terminal. If you prefer a different workflow (e.g. using an IDE), you
may need to translate some instructions.

Chapter 0: systems check
This zeroth chapter introduces (and tests) the workflow. You may skip it if you are already familiar
with C programming. Open your text editor and make a new file that we will call hello.c. Type,
#include <stdio.h>

int main() {
puts ("This is not a flow solver");

}

The program code consists of an #include directive which tells the C compiler to load the standard
input-output header file (<stdio.h>), a function declaration (main()), a corresponding code block that
is marked by curly braces ({ .. }) and a function call to the “put string” function (puts), that takes
a text string as an argument between the round braces ((...)). Altough the C compiler knows that
puts only takes a string as an argument, we need to mark our input string with the double quotation
marks ("..."). Now we can save and exit the editor and come back to the terminal, where we compile
our code. Make sure you are in the same folder as where you keep hello.c,
$ gcc hello.c

The absence of error messages marks a successfully run command. If you do get an error, read it
carefully and try to fix it. The generated executable can be run from the command line as well,
$./a.out

Any C executable starts with executing the main() function, so pretty soon you should see appear,
This is not a flow solver

on your terminal screen. Great! Lets move on . . .

Continue to chapter 1

4

1. The equations for fluid motion
The goal of a flow solver
What does it mean to “solve” a flow problem? Well, it means that we find a vector flow field that
satisfies (i.e solves) the Navier-stokes equations for a specific set of boundary conditions (in both time
and space). The pressure field in the fluid may also be regarded as a part of the solution. This aspect
is covered in a later chapter. Having access to the full four-dimensional (4D, space + time) flow field
allows to compute interesting flow statistics like wind loads, mixing characteristics, flow transport
properties, etc.

Figure 2: Example taken from the Basilisk flow solver by Stephane Popinet. Atomizing spay simulations
are useful when designing fuel injection systems. Here, the droplet-size distribution is an interesting
statistic to help characterize spray pattern efficiency

The equations for fluid motion
In order to achieve an algorithmic solver for flow problems, we must first have a mathematical description
of fluid flows. A central result from the classical mechanics era are the Navier-Stokes equations for
incompressible flows. In vector form (i.e. it has multiple components) they read,

∂u
∂t

+ (u · ∇) u = −1
ρ
∇p∗ + ν∇2u,

with the constraint that,

∇ · u = 0.

5

http://basilisk.fr/src/examples/atomisation.c
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations

Here, u(x, t) is the velocity vector as a function of space x = {x, y, z} and time t, ρ is the fluid’s density,
∇ is the gradient operator, p∗ the (scalar) pressure field in the fluid and ν is the fluid’s kinematic
viscosity. In this course we limit ourselves to solving for flows of incompressible fluids with a constant
density and viscosity parameter. This leads us to introduce a modified pressure, p = p∗

ρ , so that we can
forget about the density of the fluid.

because the computer does not understand vector mathematics, it will prove useful to decompose the
equations into their scalar components. For the first velocity component (ux) we write,

∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z
= −∂p

∂x
+ ν

(
∂2ux

∂x2 + ∂2ux

∂y2 + ∂2ux

∂z2

)
,

and the other components follow analogous.

The goal of our flow solver
In science and engineering practice, efficient and feature-rich flow solvers are required. It appears that
for each application, the discretization style, grid structure and algorithms are different. This indicates
that there is not a single recipe to solve flow problems and there is no consensus on what is best.
Because our goal is more didactical in nature than gaining fame by rivaling solvers such as Openfoam,
our solver will aim to be “minimalistic”. Where we will prefer coding simplicity over features and the
solver’s speed performance. However, we will also write our solver in a modular fashion, seperating its
components so they may be improved later. The final chapter includes some suggestions.

Continue to Chapter 2

6

2. The method of lines
The Navier-Stokes equations are an example of a so-called partial differential equation: The solution
exists in a multi-dimensional parameter space, and as such the equations contain various corresponding
partial derivatives. In the previous chapter we can indeed see derivatives with respect to x, y, z and t.
For our solver we choose to delineate between the spatial dimensions and the time dimension for two
important reasons:

• The time dimension is the only one associated with causality.

• The equations are isotropic for the group x, y and z (i.e. they maybe rotated)

The actual separation in the treatment of the variables is formalized by the so-called method of lines.
Consider a dummy variable ϕ(t, x1, x2, ..., xn) that satisfies an equation of the form,

∂ϕ

∂t
= L(ϕ),

where L is some differential operator that does not include differentiation with respect to t. Because
time and physical causality are related concepts, it makes sense to solve for ϕ as an initial value problem.
Here ϕ(t = 0, x1, x2, ..., xn) is prescribed as an initial condition, and the equation can be solved by
using a time-integration method which advances the solution at the current time (ϕn) to the next point
in time (ϕn+1) which differ by a timestep size dt. It is imporant to note that the continuously evolving
field ϕ is now discretized as it only exists on a finite number of points in time. This also means that
the proper solution ϕ is fundamentally different from the discrete solution ϕn, and this introduces the
concepts of convergence, consistency and stability.

Consistency

The timestep paramter is artificially introduced. It is imporant that for increasingly smaller timesteps,
the discretization error (due to truncation) of the numerical schemes vanishes.

Stability

The inevitable errors introduced by discretization should not grow in time.

Convergence

By reducing dt→ 0, the number or timesteps (and effort) required to obtained a solution at some given
time goes to infinity. As such, we hope to see the solution converges towards an asymptotic solution
with increasing effort. This asymptotic solution should match the solution to the original equation at
the discrete intervals.

Practice with an example
For many non-linear problems (like flow problems) the above is hard to formalize in numerical algorithms.
For example, it is not even known if the Navier-Stokes equations have smooth solutions for the general
case. So we will have to think of test cases to gain confidence in our digitally-generated data.

For now, we start with an example problem, namely,

dx1

dt = −x2,

dx2

dt = x1.

7

with initial conditions x1(t = 0) = 1 and x2(t = 0) = 0. It can be verified that the solution reads,

x1 = cos(t),

x2 = sin(t).

Which describes a circular trajectory. Lets start coding a time integrator for this problem in a file
called circle.c. We will need a few functions defined in some system header files. We begin with,
#include <stdio.h>
#include <math.h>

int main() {

}

Whoa! those are a lot of lines of code, with ample of room for typos. It is important to check your
syntax early on, as spotting a bug becomes harder as we proceed.
$ gcc circle.c
$./a.out

Lets add some variables, including the final time tend = 2π, when x1 and x2 have returned to their
original positions.
...

int main() {
double x1 = 1, x2 = 0;
double Nstps = 50, tend = 6.2832; // ~2*pi
double dt = tend/Nstps;

}

The ... dots are added to hint at the ommited code (the #include directives in this case). Any errors?
It is time for an important design choice, How do we advance the solution in time?. For the sake of
minimalism, we choose the forward Euler method:

ϕn+1 = ϕn + dtL(ϕn).

If we wrap that in a time loop,
...

double dt = tend/Nstps;
for (int i = 0; i < Nstps; i++) {

double tmp_x1 = x1;
x1 = x1 - dt*x2;
x2 = x2 + dt*tmp_x1;

}
...

Note that we needed to store the value for x1,n because it would have been at stage n+1 at the time of
updating x2, which would not correspond to the Forward Euler method. Compiling and running this
code does not give us any feedback. As such, we print the solution:

...
x2 = x2 + dt*tmp_x1;
printf ("%g %g\n", x1, x2);

8

}
...

Running this code produces
$./a.out
1 0.125664
...
...
1.4787 -0.0484434

We can store the output in a file for analysis
$./a.out > solution

Now we can plot the data using Gnuplot.
$ gnuplot
...
gnuplot> plot 'solution'

Which should show you a bunch of markers. We can add the analytical solution
gnuplot> plot sample [t=0:2*pi] '+' using (cos(t)) : (sin(t)) t 'circle' w l lw 2,\
'solution'

It appears that the numerical solution is moving away for the analytical solution. For a more presentable
plot, use the following gnuplot code
set size square
set xlabel 'x_1'
set ylabel 'x_2'
set grid
plot sample [t=0:2*pi] '+' using (cos(t)) : (sin(t)) t 'circle' w l lw 2,\
'solution'
q

where the last command closes Gnuplot.

Finally, we check the convergence of this method for increasing Nstps, by wrapping the time loop in a
new loop. Also at t = tend, the distance to the analytical solution is computed and printed. The total
code note is:
#include <stdio.h>
#include <math.h>

int main() {
double tend = 6.2832; // ~2*pi
int Nstps_max = 4000;

// Convergence loop
for (int Nstps = 50; Nstps < Nstps_max; Nstps *= 2) {

double dt = tend/Nstps;
double x1 = 1, x2 = 0;
// Time loop
for (double t = 0; t <= tend; t += dt) {

double tmp_x1 = x1;

9

http://gnuplot.info

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

x 2

x1

circle

'solution'

Figure 3: The result stored as svg

x1 = x1 - dt*x2;
x2 = x2 + dt*tmp_x1;

}
// Errors logging
double error1 = x1 - 1, error2 = x2 - 0;
double L2 = sqrt(error1*error1 + error2*error2);
printf ("%d %g\n", Nstps, L2);

}
}

Lets give it a go:
$ gcc circle.c
Some error message referencing `sqrt`

The compiler (or rather the linker) may trow an error, because it does not know how to compute the
square root (sqrt()). We must link the math library during compilation, like so;
$ gcc circle.c -lm
$./a.out > errors

Now we can plot the data on a doubly-logarithmic scale, and reveal the dependency of the L2 error on
the number of steps.
$ gnuplot
...
gnuplot> set logscale xy
gnuplot> plot 'errors', 20*x**-1 lw 2 t 'xˆ{-1}'

Which may produce something like:

Because the so-called scaling of the error with L2 ∝ N−1, fits the data well, we can conclude that the

10

0.01

0.1

1

32 64 128 256 512 1024 2048

L 2

N

'errors'

N-1

Figure 4: A formatted plot saved as an .svg file reveals a First-order convergence rate

solution indeed converges. More specifically, the forward Euler method is first-order accurate, which
corresponds with the literature.

Continue with Navier-Stokes related programming in chapter 3.

11

3. Finite differences
Like with time, the spatial variability of the solution also needs to be represented discretely. The
purpose of the spatial discretization is two fold: it defines the data structure for the variables that are
being time integrated and it enables to compute the right-hand-side for the time-integrator problem,

∂ϕ

∂t
= L(ϕ).

This entails to evaluate the various spatial derivatives that appear in the Navier-Stokes equations. We
choose to adopt the so-called finite difference representation of our fields: Any smoothly varying scalar
field (e.g. ϕ) is then stored as a collection of its point values.

ϕn = {ϕ(tn,x1), ϕ(tn,x2), ..., ϕ(tn,xN)}.

We will only consider a two-dimensional domain, (x = {x, y}) and the points are distributed on a
regular and square Cartesian grid. In principle, each field (i.e. ux, uy and p) can be stored for its own
set of point locations that differs from the others. However, it is most easy (and minimalist) to have a
so-called co-located grid, where the point locations for all variables coincide.

Next, the concept of indexing is introduced, A domain of size L0 × L0 can be discretized with N ×N
points, giving a grid spacing of ∆ = L0N

−1. Each entry corresponds to a location in physical space,
but also in the computer memory. We can use integer Cartesian indexing i, j to refer to some location
in space,

ϕi,j = ϕ

(
x = X0 + ∆

(
i+ 1

2

)
, y = Y0 + ∆

(
j + 1

2

))
where {X0, Y0} is the origin of the axis.

We will start coding our solver with declaring the solution fields in some file name solver.c. As the
various solver components are added, this file will become a coding mess, so beware that it will need to
be restructured later.
#include <stdio.h>

#define N 100

double ux[N][N], uy[N][N], p[N][N]

int main() {

}

Here we have declared the fields ux, uy and p on a N x N grid. The value of the macro N is chosen
small enough for quick testing, and large enough to do simple tests. The field values can be set and
read in a loop over the grid points.
...
int main() {

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++) {

ux[i][j] = 0; // example
printf ("%g\n", p[i][j]);

12

}
}

The double loop (over i, and j) will be used many times in our solver. Furthermore, the indexing with
i and j may become tedious. As such we can provide ourselves with some macros that makes coding
easier and less prone to errors.
#include <stdio.h>
#define foreach() for (int _i = 0; _i < N; _i++) \

for (int _j = 0; _j < N; _j++)
#define val(s, x_ind, y_ind) s[_i + x_ind][_j + y_ind]

The purpose of these underscore indexing (e.g. _i) is to reduce the chance that the this variable conflicts
with future variables. Using these definitions, the previous sample code becomes more clear,
...
int main() {

foreach() {
val(ux, 0, 0) = 0;
printf ("%g\n", val(p, 0, 0));

}
}

Especially when we need to access neighboring field values, which is important to quantify the variability
of the solution at some point. However, at the edges of our domain neighbor points do not always
exists. The most minimalist way of dealing with this is by choosing periodic boundary conditions for
our solver. This can be achieved by wrapping the indices if they are smaller than 0 (e.g. −1→ N − 1
or larger than N - 1 (e.g. N → 0). Then, the grid point at the edges “see” the data at the opposite
boundary.
...
#define WRAP(i) (i < 0 ? N + i : (i >= N ? i - N : i))
#define val(s, x_ind, y_ind) s[WRAP(_i + x_ind)][WRAP(_j + y_ind)]
...

Where C’s ternary operator is used to define the WRAP() macro. We can test if it works,
...
foreach()

val(p, 0, 0) = 1.;

foreach()
if (val(p, 1, 1) != 1 || p(-1, -1) != 1) {

puts ("Error");
return 1;

}
puts ("Succes!");
...

In the second loop, we check if the top-right or bottom-left neighbor value is indeed the value we had
set it to be in the first loop. If it is not the case, it prints an error message and quits the program
(using return in the main() function).
$ gcc solver.c
$./a.out
Succes!

13

https://en.wikipedia.org/wiki/Ternary_operation

A test for finite differencing
It is important to test our code a bit more quantitatively in the context of finite differences. Consider a
dummy scalar field on a domain of size [−5, 5]× [−5, 5],

ϕ(x, y) = e−x2−y2
.

We can analytically differentiate this function,

∂ϕ

∂x
= −2x e−x2−y2

,

∂ϕ

∂y
= −2y e−x2−y2

.

the test considers estimating these derivatives numerically using our code. From high school mathematics
we may remember that the spatial derivative could be defined like so:

∂ϕ

∂x
= limh→0

ϕ(x+ h)− ϕ(x)
h

.

However, for this moment, there is no reason to bias in any specific direction (i.e using x + h, not
x− h). We could also write a more accurate centered approximation,

∂ϕ

∂x
= limh→0

ϕ(x+ h)− ϕ(x− h)
2h .

Instead of taking the limit of h to 0, our solver will have to do with h = ∆. Further, to initialize the
fields, we should also define some more useful macros and variables.

...
#include <math.h>

#ifndef N
#define N 100
#endif
...
#define Delta (L0/N)
#define x (X0 + Delta*(_i + 0.5))
#define y (Y0 + Delta*(_j + 0.5))
#define sq(x) ((x)*(x))
double L0 = 10;
double X0 = -5, Y0 = -5;
...
int main() {

double phi[N][N]; // A dummy field
foreach()

val (phi, 0, 0) = exp(-sq(x) - sq(y));

doubble L2 = 0;
foreach() {

double dphi_dx = (val(phi, 1, 0) - val (phi, -1, 0))/(2*Delta);

14

double dphi_dy = (val(phi, 0, 1) - val (phi, 0, -1))/(2*Delta);
double errorx = -2*x*exp(-sq(x) - sq(y)) - dphi_dx;
double errory = -2*y*exp(-sq(x) - sq(y)) - dphi_dy;
L2 += sq(Delta)*sqrt(sq(errorx) + sq(errory));

}
printf ("%d %g\n", N, L2);

}

Because we have chosen to set the number of cells in each dimension (N) as a macro (using the #define
directive), it is not easily possible to make convergence-test loop as we did in the previous chapter.
However, the additional #ifndef conditional statement allows to define N at compilation time. Say for
N = 32 we can do
$ gcc -DN=32 solver.c -lm
$./a.out
32 0.334759

If we want to do a convergence study to check our coding, we should write a command-line bash script.
Open a new file called check.sh,
#!/bin/bash
FILE=L2_error
rm $FILE
for ((R = 16 ; R <= 512 ; R *= 2))
do

gcc -DN=$R solver.c -lm
./a.out >> $FILE

done

Then in the terminal, make it an executable and run this script,
$ chmod +x check.sh
$./check.sh
rm: cannot remove 'L2_error': No such file or directory

The rm error message can be ignored: the rm command tried to remove a file it could not find, as it was
not produced yet. The bash script uses the >> operator, which redirects the output from the a.out
program that would normally be seen in the terminal to a plain text file. You may check the contents
of the newly created file called L2_error, which should contain the convergence-study data. Go ahead
and plot it on a log–log scale, and try to find a fit. It may look something like:

If all went well, you should see that the so-called 3-point central finite difference is second-order accurate.

The code in solver.c is getting messy. . .
The solver.c code is burdened with a lot of moderately useful #define statements that effectively
defeat the purpose of the somewhat cleaner code that follows. We can offload the code that is not
directly related to the main function of the program to elsewhere. I therefore propose to create a file
called common.h where we keep commonly used utilities. I fill it with:
#include <stdio.h>
#include <math.h>

#ifndef N
#define N 100

15

0.001

0.01

0.1

1

16 32 64 128 256 512

L 2

N

'L2_error'

N-2

Figure 5: A Second order convergence rate

#endif

#define Delta (L0/N)
#define x (X0 + Delta*(_i + 0.5))
#define y (Y0 + Delta*(_j + 0.5))
#define sq(x) ((x)*(x))

#define foreach() for (int _i = 0; _i < N; _i++) \
for (int _j = 0; _j < N; _j++)

#define WRAP(i) (i < 0 ? N + i : (i >= N ? i - N : i))
#define val(s, x_ind, y_ind) s[WRAP(_i + x_ind)][WRAP(_j + y_ind)]

//Default domain size
double L0 = 1.;
double X0 = 0, Y0 = 0;

The solver.c code can become more accessible and focussed now:
#include "common.h"

int main() {
X0 = Y0 = -5.;
L0 = 10.;
double phi[N][N];
foreach()

val (phi, 0, 0) = exp(-sq(x) - sq(y));
double L2 = 0;
foreach() {

double dphi_dx = (val(phi, 1, 0) - val(phi, -1, 0))/(2*Delta);
double dphi_dy = (val(phi, 0, 1) - val(phi, 0, -1))/(2*Delta);

16

double errorx = -2*x*exp(-sq(x) - sq(y)) - dphi_dx;
double errory = -2*y*exp(-sq(x) - sq(y)) - dphi_dy;
L2 += sq(Delta)*sqrt(sq(errorx) + sq(errory));

}
printf ("%d %g\n", N, L2);

}

Mind that the common.h file in placed between quotation marks ("...") instead of the <...> markers
that were used for the system header files (stdio.h and math.h). This hints the compiler where to look
for these files. This alteration should not change any of the functionality of the code, and the previous
script should still work, as long as solver.c is in the same folder as common.h. We are effectively
creating a rudimentary interface for coding with our flow solver. It is not really user friendly (yet),
because it has many quirks. For example, try to declare a variable named x. One could say this is an
old-fashioned style of “academic” programming, where the programmer is typically the only user of the
code.

Continue to chapter 4, where we start approximating the L(u) vector field.

17

4. The advection term
Tracer advection
In this chapter we treat the computation of the so-called advection term. It is the under-lined section
of the equations,

∂u
∂t

= −(u · ∇)u−∇p+ ν∇2u.

You may also hear this term to be called “the non-linear term” or the “convective term”. In essence,
this term describes the transport of the velocity field by itself. It will prove useful and instructive to
consider a helper equation: The advection equation for a scalar field s,

∂s

∂t
= −(u · ∇)s,

describes the evolution of a tracer field (s) advected by a velocity field (u). Clearly, if we could substitute
s← u, we retrieve our desired non-linear term. For now, we focus on implementing a function called
tracer_advection, which computes the tendency for any tracer (s) based on a velocity field.

Computing the advection term
We open a file called ns.h, indicating that this is our Navier-Stokes-equations problem-solver file, and
start by writing,
#include "common.h"

// A function for the advection term of a field `s`
void tracer_advection (double s[N][N], double ux[N][N],

double uy[N][N], double ds_dt[N][N]) {
...

}

Here we have declared a C-language function. In this case, it does not follow a standard input-to-output
structure. Rather, the input is implied to be the fields s, ux, uy and ds_dt. The values of the latter
will be computed and overwritten by this function (output) whereas it will use, but leave the former
three fields unchanged (input). The dimension of these field are hard-coded to be 2 with the double
[N][N]-array syntax, conforming with our earlier design in common.h (from the previous chapter).

but what will be the body of this function? It is good to write out the components of the previous
equation as the C-compiler does not understand vector notation.

∂s

∂t
= −(ux

∂s

∂x
+ uy

∂s

∂y
)

Although the velocity component values are readily available from the input to this function, the
derivatives of s need to be approximated,
...
void tracer_advection (double s[N][N], double ux[N][N],

double uy[N][N], double ds_dt[N][N]) {
foreach() {

double ds_dx = ...
double ds_dy = ...

18

val(ds_dt, 0, 0) = -(val(ux, 0, 0)*ds_dx + val(uy,0,0)*ds_dy);
}

}

It turns out that the standard 3-point 2-nd order accurate stencil for the derivative, as tested in the
previous chapter, i.e.;
...

// Not to use
double dsdx = (val(s, -1, 0) - val(s, 1, 0))/(2*Delta);

...

is not suitable for explicit time integration of the advective tendency. This is due to an unfortunate
accumulation of the errors introduced by this approximation over time. Instead, we will adopt a so-called
upwinding strategy, where the stencil is biased based on the local flow direction. More specifically, we
use a 2-point stencil where the gradient is estimated with upstream values of the field s. Conceptually,
this is the gradient that is being advected towards the current cell.
...
void tracer_advection (double s[N][N], double ux[N][N],

double uy[N][N], double ds_dt[N][N]) {
foreach() {

double ds_dx = val(ux, 0, 0) > 0 ?
(val(s, 0, 0) - val(s, -1, 0))/Delta :
(val(s, 1, 0) - val(s, 0, 0))/Delta;

double ds_dy = val(uy, 0, 0) > 0 ?
(val(s, 0, 0) - val(s, 0, -1))/Delta :
(val(s, 0, 1) - val(s, 0, 0))/Delta;

val(ds_dt, 0, 0) = -(val(ux, 0, 0)*ds_dx + val(uy,0,0)*ds_dy);
}

}

It is not likely that adding so many lines of code goes without typos or other errors. We should at least
test the syntax and crate a file, (advection_test.c) which #includes our new code,
#include "ns.h"

int main() {
;

}

Now we can test if gcc finds any issues,
$ gcc advection_test.c -lm
$./a.out

No errors? Then, are we done now with this term? No! We should test our tracer_advection function
qualitatively and quantitatively.

Before we do that, its time for an antr’acte. . .

19

5. Antre’acte: Visualization
The .ppm file format
It would be nice to view our future solutions, so we can inspect its structure which helps with interpreting
results. This goes beyond just the apparent beauty of flow visualizations, as so well explained by
Ascombe. It may be tempting to offload the visualization burden to a post-processing step in your
favorite Matplotlib-enabled language. However, it is actually not that hard to output images in the
simple .ppm file format. This was also be used for the movie in the opening of Chapter 0. A code that
is compatible with our previous works is implemented below,
// Colorbar used values that ramp up and down between 0 and 255
#define RAMPUP (255*(1 - (avg - val(s, 0, 0))/(maxv - avg)))
#define RAMPDOWN (255*(1 + (avg - val(s, 0, 0))/(maxv - avg)))

// Min and Max operators for clipping
#define min(a, b) (a < b ? a : b)
#define max(a, b) (a > b ? a : b)

void output_ppm (double s[N][N], char * fname, double minv, double maxv) {
// central value (white)
double avg = (minv + maxv)/ 2.;
// Open file
FILE * fp = fopen (fname, "w");
// Print ascii header for PPM file
fprintf (fp, "P6 %d %d 255\n", N, N);
// Upside up left-to-right iterator
for (int _j = N - 1; _j >= 0; _j--)

for (int _i = 0; _i < N; _i++) {
// rgb value for a simple blue-white-red colorbar
unsigned char rgb[3] = {

val(s, 0, 0) < avg ? max(0, RAMPUP): 255, // red
val(s, 0, 0) < avg ? max(0, RAMPUP) : max(0, RAMPDOWN), // green
val(s, 0, 0) < avg ? 255 : max(0, RAMPDOWN)}; // blue

// write binary
fwrite (rgb, sizeof(char), 3, fp);

}
//close file
fclose (fp);

}

I think it maybe instructive if you wrote this code yourself, copying the above by reading and rewriting
line by line. But if you do not care about the .ppm format and want to copy-paste code, this bit has
perhaps the least to do with the working of our solver. In any case, if we save these approx. 30 lines of
codes to a file called visual.h we can test it with test_visual.c
#include "common.h"
#include "visual.h"

double s[N][N];

int main() {
L0 = 10;
X0 = Y0 = -L0/2;

20

https://en.wikipedia.org/wiki/Anscombe%27s_quartet
https://matplotlib.org/

foreach()
val (s, 0, 0) = exp(-sq(x + 2) - sq(y + 2)) - exp(-sq(x - 1) - sq(y - 2));

output_ppm (s, "s.ppm", -.7, .7);
}

In the test, two Gaussian blobs are initialized, one with positive values for s in the bottom left, and
the other with negative values for s near the top. One may view the s.ppm file with most image viewer
software. For display on the website it needs to be converted to the more sensible .png format, which
can be done using the convert command which is part of the imagemagick package. In the terminal:
$ sudo apt install imagemagick
....
$ gcc -DN=200 test_visual.c -lm
$./a.out
$ convert s.ppm s.png

Figure 6: The resulting image shows the Gaussian blobs

Movie maker
It is also possible to make a movie, first we need to generate many images, called s-0XXX.ppm, where
XXX indicates the frame number.
#include "common.h"
#include "visual.h"

double s[N][N];

int main() {
L0 = 10;
X0 = Y0 = -L0/2;
int frame = 0;

21

// Loop over displacement (dx)
for (double dx = -1; dx < 1; dx += 0.02) {

foreach()
val (s, 0, 0) = exp(-sq(x - dx + 2) - sq(y + 2)) - exp(-sq(x - dx - 1) - sq(y - 2));

char fname[99];
sprintf (fname, "s-%04d.ppm", frame);
output_ppm (s, fname, -.7, .7);
frame ++;

}
}

The %04d format specifier is used for so-called zero padding. This padding adds leading zeros so that
all printed number will have four digits. This is useful to determine that frame 10 comes somewhere
after frame 2, which is not what we would get with regular alpha-numeric sorting. We can generate a
movie from these frames, again using convert in the terminal,
$ gcc -DN=200 test_visual.c -lm
$ rm *.ppm
$./a.out
$ convert s-*.ppm s.mp4.png

the rm *.ppm command removes any precious files with the .ppm extension in the current folder. Later,
we can then use convert to append all frames (from files whose names start with “s” and ending with
“.ppm”) into a movie called “s.mp4.png”. The result is shown below.

Figure 7: Moving Gaussian blobs

It is not unlikely that you run into issues whilst viewing the generated movie. This is because convert
is not really designed to handle movies well. If so, an alternative is to use FFmpeg, which needs some
extra instructions to understand the input image sequence.
$ sudo apt install ffmpeg
$ ffmpeg -pattern_type glob -i 'o-*.ppm' o.mp4.png

22

It is less intuitive, but much more powerful. For a web-friendly encoding i use,
ffmpeg -pattern_type glob -i 's-*.ppm' -c:v libx264 -vf format=yuv420p s.mp4.png

We will use this visualization to test our tracer_advection scheme in Chapt. 6

23

6. Testing the tracer_advection() function
A qualitative test
We can now start to put together our previous lessons to setup a tracer advection test case. For any
advection problem, we have a velocity field and since we are preparing for a full Navier-Stokes equations
solver, it makes sense to declare the fields for its components in the ns.h file.
include "common.h"

double ux[N][N], uy[N][N];

double t, dt = 1;

void tracer_advection (...

We have also introduced global variables for the time (t) and the time step size (dt), whose value
we can alter in the test file test_advection.c. In this file, we will setup the test, which consists of
including the relevant header files and declare a scalar field. In test_advection.c :
#include "ns.h"
#include "visual.h"

// Scalar field
double s[N][N];

int main() {
// setup domain size
L0 = 10;
X0 = Y0 = -L0/2;

}

All OK? We can continue by initializing the relevant field values. For s we could reuse the compact
functions from the previous chapter. For the velocity field, we can use a simple translation. The case is
fully defined by setting an end time that corresponds to a complete cycle though the periodic domain.
...

X0 = Y0 = -L0/2.;
// Initlauze s, ux and uy
foreach() {

val (s, 0, 0) = exp(-sq(x + 2) - sq(y + 2)) - exp(-sq(x - 1) - sq(y - 2));
val (ux, 0, 0) = -2.;
val (uy, 0, 0) = 0.;

}
// end time
double t_end = 5;

}

Now we setup the time loop (c.f. Chapt. 2) with a small value for dt.
...
// end time
double t_end = 5;
double dt = 0.05;
// step counter
int iter = 0;

24

// Time loop
for (t = 0; t < t_end; t += dt) {

// Tendency
double ds_dt[N][N];
tracer_advection (s, ux, uy, ds_dt);
// Advance
foreach()

val(s, 0, 0) += dt*val(ds_dt, 0, 0);
// Visualize
char fname[99];
sprintf (fname, "s-%04d.ppm", iter);
output_ppm (s, fname, -0.7, 0.7);
// Increment step counter
iter++;

}
printf ("# Solver finished after %d steps at t = %g\n", iter, t);

}

Most of the code above should look familiar from the previous chapters. After some cleaning up, we
can compile and run our test.
$ rm s-*.ppm
$ gcc test_advection.c -lm
$./a.out
Solver finished after 101 steps at t = 5.05

Great! Lets generate a movie,
$ convert s-*.ppm s_advect.mp4.png

Figure 8: Again, moving blobs

If you have arrived at this point, you should realize that a lot has gone well. Indeed the blobs move(!),

25

in the expected direction(!) (ux < 0), and the expected distance(!) (single cycle). All is well then?

Well. . . lets push our solver a bit, and increase the resolution.
$ rm s-*.ppm
$ gcc -DN=400 test_advection.c -lm
$./a.out
Solver finished after 101 steps at t = 5.05
$ convert s-*.ppm s_400.mp4.png

Disaster!

Figure 9: An instability

A stability criterion

We have obtained an nonphysical solution due to the rapidly accelerating growth of errors. Indeed, our
upwinding strategy does not yield unconditionally stable time integration. Even before the advent of
the digital computer it was known that the time-step size cannot be chosen freely for such advection
problems. Rather, for explicit time-integration (such as forward Euler) it must be chosen small enough
so that the cells do not “over flow” in a single step. This is formalized by the so-called CFL condition,
named after its “inventors”, Richard Courant, Kurt Friedrichs, and Hans Lewy. In can be interpreted
as follows: There exists a dimensionless number (CFL) that compares the time-step size (dt) against
the mesh-element size (∆), based on the (maximum) velocity in the domain.

CFL = dt∥u∥max

∆ .

For any explicit time integration method, there exists a maximum critical finite value for which the
solution will remain stable. Typically, CFLcrit. ≈ 1. In practice, this entails selecting a time-step size
based on this so-called CFL condition,

26

https://en.wikipedia.org/wiki/Courant%E2%80%93Friedrichs%E2%80%93Lewy_condition

dt = CFLcrit.
∆

∥u∥max
.

Notice that this stability criterion is separate from any accuracy criterion. Our test in the second
chapter was therefore not representative for the time integration of flow problems. Further, the CFL
criterion directly relates the spatial discretization parameter (∆) to one for time. This is somewhat
natural when doing a convergence study for a spatio-temporal problem.

For now, we have to extent our code in ns.h with a function that returns the CFL-based limit. Notice
that the C language does not come with a simple function that finds the absolute maximum of an array.
So we need to code it ourselves. In ns.h,
...
double t, dt = 1;
double CFL = 0.7;

void tracer_advection (...) {
...

}

double dt_CFL () {
double max_v = -1.;
foreach() {

if (fabs(val(ux, 0, 0)) > max_v)
max_v = fabs(val(ux, 0, 0));

if (fabs(val(uy, 0, 0)) > max_v)
max_v = fabs(val(uy, 0, 0));

}
if (max_v > 0) // Dont divide by zero

return CFL*Delta/max_v;
return 1e30;

}

After setting a safe value for CFL, the new function without input determines the absolute maximum
value of the velocity component fields and computes an appropriate time step. A special check is
performed for the case where max_v = 0, to prevent dividing by zero. Note that once a return
statement is executed, the control loop stops further function evaluation. I.e. this function either
returns with the CFL-based limit or with 1030. Finally, I will admit that it is somewhat debatable and
inconsistent to set ux and uy as input to the function tracer_advection(), and rely on the global
variables in dt_CFL() for the velocity data. You may choose to do otherwise.

While we are in ns.h, I would also like our solver to stop at t = t_end, and not at t = t_end + dt,
which was the case in our previous experiment (see the terminal output). Once the time parameter t is
close to t_end, t + dt should be smaller or equal to t_end, not to over step. For this purpose, we add
a new function in ns.h:
...

return 1e30;
}

double dt_next (double t_end) {
double DT = dt_CFL();
if (t + DT > t_end)

return t_end - t;

27

return DT;
}

We use this to update our time stepping in test_advection.c
...
// end time
double t_end = 5; //L0/ux
// step counter
int iter = 0;
// Time loop
for (t = 0; t < t_end; t += dt) {

// compute timestep size
dt = dt_next(t_end);
// Tendency
double ds_dt[N][N];
...

Now test
$ rm s-*.ppm
$ gcc -DN=400 test_advection.c -lm
$./a.out
Solver finished after 572 steps at t = 5
$ convert s-*.ppm s_400.mp4.png

It appears to solver took more steps and ends at to correct time. You can verify the contents
of s.mp4.png yourself. To test our upwinding implementation, it would also be good to redo the
experiment with positive and negative values for both ux and uy.

This chapter continues with two exercises.

(1) A quantitative test
It would be good to not only visually inspect the solution, but also diagnose the convergence rate of our
formulations. For this purpose, you could setup a workflow as in Chapt. 3 using the initialized solution
as the reference analytical solution after one full cycle. Indeed, pure translation should not alter the
shape of the solution. For this case, the domain size needs to be enlarged as the initialized solution is
not consistent with the periodic boundaries. This effect is exponentially reduced by increasing L0. Note
that when analyzing your results, both spatial and temporal discretization are only first-order accurate.

(2) A Well-behaved solver?
Although the speed performance of our solver is not a critical concern, we should verify if the time
efficiency at least behaves well. This entails verifying the scaling of the time effort against the expected
scaling of the iteration effort. For this purpose we turn of the output routine,
...
// output_ppm (...
...

so that the disk-writing performance does not affect our wall-clock time to solution. Next, we generate
3 executables with increasingly finer grids. In order to not overwrite a previously generated program,
we name them differently using the -o option, to name the output programs other than the default
a.out.

28

$ gcc -DN=100 test_advection.c -lm -o ta-100
$ gcc -DN=200 test_advection.c -lm -o ta-200
$ gcc -DN=400 test_advection.c -lm -o ta-400

We can use a stopwatch that is build into most shells to measure the time spend on the execution of
the programs. I get (using bash for illustrative purposes):
$ time ./ta-100
Solver finished after 143 steps at t = 5

real 0m0.136s
...
$ time ./ta-200
Solver finished after 286 steps at t = 5

real 0m0.885s
...
$ time ./ta-400
Solver finished after 572 steps at t = 5

real 0m6.819s
...

As we increase the resolution by a factor of two, the effort required to run the simulation increased by
a factor of eight! This somewhat worrying scaling behavior is in fact the expected result, and so far,
our solver is well behaved. Can you see why?

Lets continue with the next term in the Navier-Stokes equations in chapter 7

29

7. The viscous term
In this chapter, we‘ concern ourselves with the viscous term. I.e. the under-lined term in the equations
below,

∂u
∂t

= −(u · ∇)u−∇p+ ν∇2u.

This term aims to describes the diffusion of momentum originating from the exchange of momentum by
colliding molecules. For sufficiently continuous fluids, the effects of the incredibly-complicated statistical
dynamics of these collisions are remarkably well modeled with the relatively simple diffusion term with
a constant diffusivity of momentum (kinematic viscosity, ν).

Again, it will prove useful to consider a helper equation: The diffusion of a scalar field s in a medium
with diffusivity κ,

∂s

∂t
= κ∇2s,

where ∇2s symbolizes the divergence of the gradient of s,

∂s

∂t
= κ(∇ · ∇s),

but if we write it without vector-operator notation it reads,

∂s

∂t
= κ

(
∂2s

∂x2 + ∂2s

∂y2

)
.

It appears we need to estimate the second derivative of the field s with respect to the spatial directions.
The second derivative in any direction can be evaluated by differentiating the first derivative. Concep-
tually, it would be an OK idea to implement a gradient_x(s[N][N], ds_dx[N][N]]) function (and
an gradient_y() counterpart), which compute the spatial derivatives of a field. We could then use it
to compute the higher-order derivatives by calling it successively. For our second derivative,
// We will not use this!
double s[N][N];
...
// Storage for first and second derivative in x direction
double ds_dx[N][N], d2s_dx2[N][N];
// Differntiate twice
gradient_x (s, ds_dx);
gradient_x (ds_dx, d2s_dx2);

Although performance was not a concern for the design of our solver, the code above is wasteful to
such a degree that is would be an insult to the didactic nature of this text. This is because we can
achieve the same result without introducing new fields by analyzing the stencil operations. Say we use
the 3-point second-order accurate gradient,

∂s

∂x
[0, 0] ≈ s[1, 0]− s[−1, 0]

2∆ ,

30

where ∂s
∂x [0, 0] denotes the derivative in the current cell and s[1, 0] denotes the right-hand-side neighbor

value (val(s, 1, 0)). The second derivative is then approximated by,

∂2s

∂x2 [0, 0] ≈
∂s
∂x [1, 0]− ∂s

∂x [−1, 0]
2∆ ,

Combining the equations,

∂2s

∂x2 [0, 0] ≈ s[−2, 0]− 2s[0, 0] + s[2, 0]
4∆2 .

Now we can directly evaluate this expression when needed instead of declaring fields for storage, which
is so much better, that the “successive gradients” method becomes a bit silly. It is however odd that
our expression is 5 points wide (from s[−2, 0] to s[2, 0]), but only uses three values. We have inherited
this from the original conception where the (intermediate) first derivative was evaluated at the grid
points. The field s and its two derivatives needed to be co-located for the successive gradient approach.
But for the theoretical analysis we could have computed these values at the mid points in between cells,

∂s

∂x
[12 , 0] ≈ s[1, 0]− s[0, 0]

∆ .

Redoing the exercise in the so-called staggered fashion, where the gradients are (on paper) evaluated in
between the grid points, results in,

∂2s

∂x2 [0, 0] ≈ s[−1, 0]− 2s[0, 0] + s[1, 0]
∆2 .

We are now ready to implement the diffusion term for a scalar field s. In ns.h, insert
...

void advection (...) {
...
}

void diffusion (double s[N][N], double kappa, double ds_dt[N][N]) {
foreach() {

val(ds_dt, 0, 0) += kappa/sq(Delta)*
(val(s, -1, 0) - 2*val(s, 0, 0) + val(s, 1, 0));

val(ds_dt, 0, 0) += kappa/sq(Delta)*
(val(s, 0, -1) - 2*val(s, 0, 0) + val(s, 0, 1));

}
}

double dt_CFL () {
...

Notice that we have chosen to add (using +=) the diffusive tendency to the input filed ds_dt. This
way, we can simply add the viscous tendency to an earlier initialized (advection) tendency.

31

A stability criterion
Just as for the advection equation, explicit time integration of the diffusion equation is prone to
instabilities for too large time steps (dt) on relatively fine grids. We can again compare the time-step
size and the grid size (∆) using the equation parameter κ with a dimensionless number (Pe),

Pe = κdt
∆2 .

A (sometimes) so-called critical cell-Peclet number (Pecrit) can be used to compute a stable time-step
size,

dt = Pecrit
∆2

κ
.

Clearly, this diffusion-based limit gets smaller faster for small ∆ compared to the CFL-based limit. For
our solver, we will simply take the minimum of these constraints. This warrants to bump our min/max
definitions in the visual.h file to the common utilities file common.h. In ns.h, we will consider the
diffusivity for a scalar field (κ), and the fluid’ viscosity (ν) separately. Since the latter is just a fancy
word for the diffusivity of momentum, we take their maximum to compute the Peclet-based limit.
...
double CFL = 0.8, Pe = 0.1;
double kappa = 0, nu = 0;
...
double dt_CFL() {

...
}

double dt_diffusion() {
return Pe*sq(Delta)/max(kappa, nu);

}

double dt_next (double t_end) {
double DT = min(dt_CFL(), dt_diffusion());
if (t + DT > t_end)

return t_end - t;
return DT;

}

Testing
The diffusion of a Gaussian bump has an analytical solution. In 2D,

s(t, x, y) = e
−x2−y2
4κ(t+t0)

4πκ(t+ t0) ,

With arbitrary time-shift parameter t0. We can set up a test using this. First qualitatively in
diffusion_vis.c,
#include "ns.h"
#include "visual.h"
#define pi (3.14159265)

32

#define SOL(t) ((exp((-sq(x) - sq(y))/(4*kappa*(t + t0))))/(4*pi*(t + t0)))

double t0 = 0.5, t_end = 1;
double kappa_val = 2.;

double s[N][N];

int main() {
L0 = 20;
X0 = Y0 = -L0/2.;
kappa = kappa_val;

foreach()
val (s, 0, 0) = SOL(t);

int iter = 0;
for (t = 0; t < t_end; t += dt) {

dt = dt_next(t_end);
double ds_dt[N][N];
foreach()

val (ds_dt, 0, 0) = 0;
diffusion (s, kappa, ds_dt);
foreach()

val (s, 0, 0) += dt*val(ds_dt, 0, 0);
char fname[99];
sprintf (fname, "s-%04d.ppm", iter);
output_ppm (s, fname, -0.1, 0.1);
iter++;

}
printf ("# Solver finished at t = %g after %d iterations\n",

t, iter);
}

Compile and run,
$ rm s-*.ppm
$ gcc -DN=200 diffusion_vis.c -lm
Solver finished at t = 1 after 2001 iterations

Oef! 2001 iterations, that movie will take about 80 seconds at 25 frames per second. Lets reduce it a
bit by only writing a frame every iter_interval interations.
...
int iter_interval = 20;

int main() {
...
if ((iter % iter_interval) == 0) {
char fname[99];
sprintf (fname, "s-%04d.ppm", iter);
output_ppm (s, fname, -0.1, 0.1);

}
iter++;

33

...

Lets check the movie (remember to remove the old images).

Figure 10: Diffusion seems to smoothing out the gradients

This looks good, and we can continue to do the convergence test, which is left as an exercise for
the reader. Notice that for a well-behaved solver, the effort now scales with ∝ ∆4, which is truly
horrific. At this point it can become advantageous to compile with optimization: At the expense of a
more time-consuming compilation step (i.e. the gcc ... command), a more optimized executable is
generated. The steps taken in this optimization process are truly remarkable (see), but are far outside
the scope of this course. Instead, we simply “turn on optimization” as a command-line option. The
highest level of optimization supported by the gcc compiler is achieved with the option -O3.
$ gcc -O3 -DN=200 diffusion_vis.c -lm

It is now time for another Antr’acte before we add the last term (or is it?).

34

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

8. Antre’acte: A Poisson-problem solver
Poisson’s equation
Poisson problems arise in many fields in science and engineering. For example, it relates the electric
or gravity potential (ϕ) to the spatial charge-density or mass-density distribution (ρ), respectively. It
reads,

∇2ϕ = ρ.

From the previous chapter, we know how to approximate the left-hand side (∇2ϕ) to obtain an
approximation of the scalar field ρ, so what is Poisson’s problem? It is about the reversed case, finding
ϕ, for a given so-called source term (i.e. the right-hand side, ρ) that satisfies the above equation. This
is an implicit problem, as we can only verify a solution after is has already been computed. On the
other hand, it is a relatively simple linear expression, and an analytical solution has been found. In 2D,

ϕ(x) = −
∫∫

ρ(x′)
2π∥x− x′∥

d2x′.

Our goal is to implement a function poisson (double phi[N][N], double rho[N][N]), that approx-
imates this solution. It is tempting to use this analytical form, and integrate the solution over our
domain. Although this is easier said than formalized, it would indeed be a valid strategy. However,
many alternative methods exist, and we will take another route where we have more easy control over
some numerical properties of our solution.

Notice that the Poisson equation alone does not fully specify the problem as any solution (ϕ1) that
solves the Poisson problem, can be altered by a solution (ϕ2) to an Laplace equation

∇2ϕ2 = 0.

Given the linearity of the problem, ϕ3 = ϕ1 + ϕ2 would also solve the Poisson problem. Examples
for ϕ2 include a constant field, and fields with constant gradients. This ambiguity can be taken away
by setting suitable boundary conditions for ϕ on the domain. However, since we limit ourselves to
periodic boundaries on square domains, the solution is ambiguous and can be changed by adding and
subtracting an arbitrary constant.

No worries, there could exist many solutions ant that could make it easier to find at least one?. Well,
that is assuming that there exists a regular solution. Consider for example the case of an infinitely
periodically repeating positive charge distribution. The corresponding electric potential well would be
infinitely deep ϕ→ −∞, making it obvious to state that for such a case, no regular solution exists. As
such, the boundary conditions to a Poisson problem often impose a compatibility constraint on ρ. For
our periodic solver, it means that the domain (D) integral of ρ must net zero.

∫∫
D
ρdxdy = 0.

A numerical solving strategy
From the previous chapter, we know a discrete second-order accurate version of the problem is that for
all cell indices i and j,

ϕ[i− 1, j] + ϕ[i, j − 1]− 4ϕ[i, j] + ϕ[i+ 1, j] + ϕ[i, j + 1]
∆2 = ρ[i, j].

35

A rather crude, yet incredibly simple, strategy for finding such ϕ is to itteratively solve for it. For a
given cell we could satisfy the equation locally by assigning the corresponding value to the current cell,

ϕ[0, 0]← −∆2ρ[0, 0] + ϕ[−1, 0] + ϕ[0,−1]ϕ[1, 0] + ϕ[0, 1]
4 .

If we do this for every cell in the grid, we are only guaranteed to satisfy the Poisson equation in the last
cell of our iterator. However, if the initial guess of the ϕ-field is not particularly bad, the changes to
the local cell (ϕ[0, 0]) can be small. Of the then repeatedly sweep over all cells, the difference between
the replacement values and the current solution may shrink to a very small value. This could indicate
that the solution converges by successive direct replacement. Lets implement this idea in a file called
poisson.h.
int max_sweeps = 100;

void poisson (double phi[N][N], double rho[N][N]) {
for (int sweep_nr = 0; sweep_nr < max_sweeps; sweep_nr++) {

foreach() {
double c = 0;
for (int i = -1; i <= 1; i += 2)

c += val(phi, i,0) + val(phi, 0, i);
val(phi, 0, 0) = (c - val(rho, 0, 0)*sq(Delta))/4.;

}
}

}

It would also be nice to trace the so-called residual (res) as the ϕ field “relaxes” towards the solution.

res = ∇2ϕ− ρ

We are interested in its absolute maximum,
...

foreach() {
...
}
double max_res = -1;
foreach() {

double c = 0;
for (int i = -1; i <= 1; i += 2)

c += val(phi, i,0) + val(phi, 0, i);
double res = (c - 4*val(phi, 0, 0))/sq(Delta) - val(rho, 0, 0);
if (fabs(res) > max_res)

max_res = fabs(res);
}
printf ("%d %g\n", sweep_nr, max_res);

}
}

We can now see if our approach works using test-poisson.c,
#include "common.h"
#include "poisson.h"

36

int main() {
L0 = 2*3.1415;
// phi and rho (a and b)
double a[N][N], b[N][N];
foreach() {

val (a, 0, 0) = 0;
val (b, 0, 0) = sin(x) + cos(y);

}
poisson (a, b);

}

Note that we have initialized the a-field values to some initial guess as it could contain garbage
upon declaration. Further, the source field b is carefully chosen such that it satisfies the compatibly
requirement. Compile and run,
$ gcc test_poisson.c -lm
$./a.out
0 2.77167
1 2.91396
2 2.94642
3 2.95452
4 2.95533
...
95 2.48183
96 2.47694
97 2.47206
98 2.46719
99 2.46233

The output reveals that the residual is somewhat decreasing, but after 100 iterations the maximum resid-
ual (which should go to zero) is still relatively close to its initial value. We can change test_poisson.c
to take more sweeps in to hope for a better solution,
...

max_sweeps = 10000;
poisson (a, b);

}

Resulting in,
$ gcc -O3 test_poisson.c -lm
$./a.out
...
9996 5.89834e-05
9997 5.89834e-05
9998 5.89834e-05
9999 5.89834e-05

Much better. lets investigate the convergence of the solution a bit,
$./a.out > out
$ gnuplot
gnuplot> set logscale y
gnuplot> plot 'out'

37

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

10.000000

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000

m
ax

 r
es

id
ua

l

sweep nr

data

0.998i

Figure 11: A formatted plot stored as .svg

If seems that for the fist few thousand iterations, there is a constant reduction factor for the residual
with each sweep (≈ 0.998), but after some point the solution stops to improve. This is a reminder of the
compatibility requirement. Because we have only defined π with a few digits, the discrete integral of
the source term is not exactly zero, and there does not exist a proper solution to the discrete problem.
You can verify by setting L0 = 2*3.14159265;, that the residual reduces to 6.62...e-9. It is nice to
know that our iterative solver was quite robust in the previous case, as is did manage to find a field ϕ
that nearly solves the impossible problem.

A criterion to stop sweeping
The accurate solution to the discrete problem (i.e. a small residual), is rather expensive to obtain due to
the high number of relaxation sweeps. It would be nice to stop iterating once the field ϕ is sufficiently
close to solving the discrete problem. This can be especially rewarding for cases when the initial guess
is quite close to the solution and only a few iterations are needed for a small residual. As such we will
tolerate a small maximum absolute residual on our solution, and stop sweeping once it is achieved. In
poisson.h, we replace our for loop with a do-while construction.
int max_sweeps = 1e4;
double tolerance = 1e-3;

void poisson (double phi[N][N], double rho[N][N]) {
int sweep_nr = 0;
double max_res = -1;
do {

foreach() {
...

}
sweep_nr++;
max_res = -1;
foreach() {

...
}

} while (max_res > tolerance && sweep_nr < max_sweeps);

38

// Warn when the solution did not converge within `max_sweeps`
if (max_res > tolerance)

printf ("# Warning: max res = %g is greather than its tolerance (%g)\n",
max_res, tolerance);

printf ("%d %g\n", sweep_nr, max_res);
}

We can test it,
$ gcc test_poisson.c -lm
$./a.out
4054 0.000999368

The relevance becomes apparent by perturbing the solution with a high-frequency component. In
test_poisson.c,
...

poisson (a, b);
foreach()

val (a, 0, 0) += 0.1*(sin(10*x)*cos(20*y));
poisson (a, b);

}

Gives as output,
...
4054 0.000999368
38 0.000992947

The second line shows that when the initial guess of the solution was already close to the final solution,
the Poisson solver automatically stopped after only a few sweeps (38). Note that the residual reduction
per sweep is likely to be smaller (i.e. favorable) than the 0.998 from the previous case.

The last coding in this chapter is to remove the not strictly needed messaging. It would clutter output
as we call it many times during a flow simulation.
...
// printf ("%d %g\n", sweep_nr, max_res);
...

Solving for ∇ϕ

Often, and not in the last place for computational fluid dynamics, we are not really interested in ϕ, but
use it to compute its gradients. This is why we do not really care about the constant offset any solution
may have on a periodic domain. It should be noted however, that the computed discrete gradients
of our solution field ϕ may not inherit the expected properties of such gradient fields from the small
tolerance on ϕ to solve the discrete Poisson problem. This is a bit cryptic way of repeating that the
3-point stencil for the Laplacian operator was derived from gradients evaluated at staggered locations.
So when we are computing gradients of our solution at grid points, the divergence of these gradients
will not match the source term exactly (irrespective of the value for tolerance). A way around this
problem is to change the discrete problem to the earlier derived 5-point stencil,

ϕ[i− 2, j] + ϕ[i, j − 2]− 4ϕ[i, j] + ϕ[i+ 2, j] + ϕ[i, j + 2]
4∆2 = ρ[i, j],

and require that the gradients must be evaluated using the central 3-point stencil. Another way around
this issue it is to define the variables that interact with the gradients to also be staggered compared to

39

ϕ. We will discuss what this narrative actually entails for our solver in a future chapter. But it turns
out, we can mostly ignore it for now.

We can now apply our linear solver to compute the pressure-gradient term in Chapt. 9.

40

9. The pressure-gradient force
In this chapter we will consider the pressure term. That is the under-lined term in the Navier-Stokes
equations below,

∂u
∂t

= −(u · ∇)u−∇p+ ν∇2u.

This term is perhaps the most involved and least intuitive of these equations. This is perhaps because
the pressure in a fluid is a somewhat illusive concept. As already mentioned, we will find an implicit
problem that needs to be solved in an intermediate step before actually computing the pressure gradient.
To add insult to injury, we cannot really conceptualize this term for a helper scalar field, so we will do
the full vector calculus.

Before we start, we should get some common misconceptions out of the way. If you have learned
about forced flows (e.g. pipe flow) in your fluid dynamics classes, your intuition may tell you that the
pressure gradient in externally applied and prescribed by some sort of pumping mechanism. Although
a pressure drop can be treated as a boundary condition, a more relevant view (from the perspective of
our solver) is demonstrated by the Bernoulli principle. If a steady pipe flow contains some constriction
(e.g. a Venturi), the approaching flow accelerates towards the narrowing. This accelerating force comes
from the pressure gradient as Bernoulli realized this region of high velocities is associated with a lower
pressure. It thus appears that the pressure field is directly related to the flow itself. But how?

Another confusing conception is the thermodynamic meaning of pressure. Especially for those who
are versed in compressible flows it can be hard to go without some equation of state. Indeed, for in
compressible flows in simple (i.e. at least rigid) geometries, pressure loses its thermodynamic meaning.
The pressure can be seen to adjust such that the flow remains incompressible. This entails that we do
not need to time integrate some evolution equation for the pressure as we can derive it directly as a
function of the flow.

A projection method
The fundamental theorem of vector calculus states that any vector field v can be decomposed as,

v = R +∇ϕ,

where,

∇ ·R = 0.

such that the divergence in v is captured by the scalar-gradient term. We already have the tools to
make this so-called Helmholtz decomposition numerically. If we take the divergence of the equation,

∇ · v = ∇ ·R +∇ · ∇ϕ,

∇ · v = 0 +∇ · ∇ϕ.

We see the structure of a Poisson equation where the source term is the divergence of the vector field v.
If we have solved for ϕ, we can also find R by,

R = v−∇ϕ,

41

completing the decomposition. At the risk of sounding cryptic, we could say that R is the projection of
v onto the space of divergence-free vector fields1. Lets code it up! In ns.h,
...

void diffusion (...) {
...

}

void projection (double vx[N][N], double vy[N][N], double phi[N][N]) {

}
...

Note that it will prove important to have the phi field as input, altough we could in principle declare
and initialize it in the function’s scope. The function takes the steps described above, overwriting the
input vector field.
#include "common.h"
#include "poisson.h"
...
void projection (double vx[N][N], double vy[N][N], double phi[N][N]) {

// Compute the divergence
double div[N][N];
foreach() {

val(div, 0, 0) = (val(vx, 1, 0) - val(vx, -1, 0))/(2*Delta);
val(div, 0, 0) += (val(vy, 0, 1) - val(vy, 0, -1))/(2*Delta);

}
// Compute the helper scalar field
poisson (phi, div);
// Reject the divergent part
foreach() {

val (vx, 0, 0) -= (val(phi, 1, 0) - val(phi, -1, 0))/(2*Delta);
val (vy, 0, 0) -= (val(phi, 0, 1) - val(phi, 0, -1))/(2*Delta);

}
}
...

For now, I propose to only test the syntax of this function (using gcc), and not do a proper test, as we
will already change it in the next section and we will test it soon enough in a proper flow setting.

Chorin’s projection method
In Chorin’s seminal paper2 on numerical flow-problem solving, the above projection method is used
to compute the pressure term. His special insight was on how to compute it in conjunction with the
advection and diffusion terms. In the first stage of our time step, a provisional velocity field (u∗) is
computed at tn+1 = tn + dt, which considers every term except the pressure term.

u∗ = un + dt
(
−(un · ∇)un + ν∇2un

)
.

We can find un+1 by projecting u∗ on to the space of divergence-free vector fields. But what about the
1It seems more like a vector rejection to me.
2Chorin, Alexandre Joel. “Numerical solution of the Navier-Stokes equations.” Mathematics of computation 22.104

(1968): 745-762.

42

http://basilisk.fr/sandbox/jmf/Hodge/hodge.c

pressure? phi can not be it as is does not have the right units. Well, it is the pressure, but its off by a
factor dt . See,

un+1 = u∗ − dt∇p,

taking the divergence,

∇ · un+1 = ∇ · u∗ −∇ · dt∇p,

0 = ∇ · u∗ −∇2dtp,

This is the previous Poisson equation with ϕ← dtp.

∇ · u∗ = ∇2dtp,

Or even better, we can divide by the time-step size (dt)

∇ · u∗

dt = ∇2p.

In view of this, I propose to alter the projection() function a little,
void projection (double vx[N][N], double vy[N][N],

double phi[N][N], double dt) {
// Compute the divergence devided by `dt`
double div[N][N];
foreach() {

val(div, 0, 0) = (val(vx, 1, 0) - val(vx, -1, 0))/(2*Delta);
val(div, 0, 0) += (val(vy, 0, 1) - val(vy, 0, -1))/(2*Delta);
val(div, 0, 0) /= dt;

}
// Compute the pressure field
poisson (phi, div);
// Reject the divergent part
foreach() {

val (vx, 0, 0) -= dt*(val(phi, 1, 0) - val(phi, -1, 0))/(2*Delta);
val (vy, 0, 0) -= dt*(val(phi, 0, 1) - val(phi, 0, -1))/(2*Delta);

}
}

Using p as the helper scalar field for projection instead of any other is important as it means that
for slowly evolving flows, the pressure field from the previous time step will serve as a good initial
guess. This would not be the case for ϕ, which could change a lot with varying time-step sizes. Further,
scaling the divergence with dt introduces a good moment to consider the meaning of our tolerance on
the maximum residual (tolerance). If we wish the tolerance to represent the maximum divergence in
our solution we should scale it with the time step size.
void projection (double vx[N][N], double vy[N][N],

double phi[N][N], double dt) {
// store desired tolerance and set tolerance on divergence/dt
double tol = tolerance;
tolerance /= dt;

43

...
// Reset tolerance
tolerance = tol;

}

We cant really diagnose this low-tolerance divergence as the gradients in our Poisson solver were
defined in a staggered fashion. Any divergence we can approximate will be polluted with an additonal
discretization error. Further, our projection method is only approximately as we did not opt for the
5-point stencil version.

At this moment, we can combine our functions in to a Navier-Stokes equation time-stepping function.
We will do this in the next chapter.

44

10. A Navier-Stokes problem solver
A time stepping function
We have arrived at the point where we can code our time-stepping function. This function of the form,
void advance_ns (double dt)

will advance the solution field (ux and uy) in time by a timestep dt. We already know that this will
require the computation of the associated pressure field which we like to keep in between steps. So in
ns.h we declare a global-scope field p[N][N] along with the velocity-component fields.
#include "common.h"
#include "poisson.h"

double ux[N][N], uy[N][N], p[N][N];

...

void projection (...) {
...

}

void advance_ns (double dt) {
}
...

As aforementioned, we will first compute the provisional velocity field. This is a separate update to the
ux and uy scalar field according to the advection + diffusion equation. As such, we will first implement
an advance_scalar () function that makes a time step for scalar fields.
...
void projection (...) {

...
}

void advance_scalar (double s[N][N], double ux[N][N],
double uy[N][N], double kappa, double dt) {

double ds_dt[N][N];
tracer_advection (s, ux, uy, ds_dt);
if (kappa > 0)

diffusion (s, kappa, ds_dt);
foreach()

val(s, 0, 0) += dt*val(ds_dt, 0, 0);
}

void advance_ns (...) {
...

We can use this to compute the provisional velocity field u∗ in advance_ns() which we can not store
in the original arrays, as they would be updated with different velocity fields.
...
void advance_ns (double dt) {

// Declare and initialize and compute u_star
double ux_star[N][N], uy_star[N][N];

45

foreach() {
val (ux_star, 0, 0) = val(ux, 0, 0);
val (uy_star, 0, 0) = val(uy, 0, 0);

}
advance_scalar (ux_star, ux, uy, nu, dt);
advance_scalar (uy_star, ux, uy, nu, dt);

}
...

To complete Chorin’s method, project u∗ and update the solution.
...
advance_scalar (uy_star, ux, uy, nu, dt);
// Project and update
projection (ux_star, uy_star, p, dt);
foreach() {

val (ux, 0, 0) = val(ux_star, 0, 0);
val (uy, 0, 0) = val(uy_star, 0, 0);

}
}
...

Two tests
We should now test the combined functions of our code. A difficulty with the non-linear Navier-Stokes
equations is that finding non-trivial solutions is hard, which limits the ability to test a solver. Here we
will consider two flow solutions, one will be investigated qualitatively, the other quantitatively.

The Lamb-Chaplygin dipole

I am proud to say that I lead authorship for the Wikipedia page on the Lamb-Chaplygin dipole. Quoting
myself,

The Lamb–Chaplygin dipole model is a mathematical description for a particular inviscid
and steady dipolar vortex flow. It is a non-trivial solution to the two-dimensional Euler
[Navier-Stokes] equations. The model is named after Horace Lamb and Sergey Alexeyevich
Chaplygin, who independently discovered this flow structure.3

Here we test if our solver can represent this steady solution. We will use the stream function (ψ) to
initialize the flow field. Which are related by,

ux = ∂ψ

∂y
, uy = −∂ψ

∂x
.

The stream function for the Lamb-Chaplygin dipole in cylindrical coordinates (r, θ) reads,

ψ =
{
U

(
−2J1(kr)
kJ0(kR) + r

)
sin(θ), for r < R,

U R2

r sin(θ), for r ≥ R,

However, this formulation is based on an infinitely large domain size. As such, we will focus on the (2D
scalar) vorticity (ω = −∂ux

∂y + ∂uy

∂x) distribution,
3Meleshko, V. V., and G. J. F. Van Heijst. “On Chaplygin’s investigations of two-dimensional vortex structures in an

inviscid fluid.” Journal of Fluid Mechanics 272 (1994): 157-182.

46

https://en.wikipedia.org/wiki/Lamb%E2%80%93Chaplygin_dipole

ω =
{
kU

(
−2J1(kr)

J0(kR)

)
sin(θ), for r < R,

0, for r ≥ R,

where R is the size of the circular dipole, U is it’s translation velocity, J0 and J1 are the zeroth and
first Bessel functions of the first kind, and the value for k is such that kR = 3.8317, the first non-trivial
zero of the first Bessel function of the first kind. We can compute a suitable stream function via the
(Poisson) relation,

∇2ψ = −ω,

which can then be used to compute u(t = 0).

Lets code it up in lamb.c. We start by carefully implementing the vorticity field (ω, omega) , solving
for ψ (psi) and computing the initial velocity field.
#include "ns.h"
#include "visual.h"
#define RAD (sqrt(sq(x) + sq(y)))
#define SIN_THETA (RAD > 0 ? y/RAD : 0)
double U = 1, R = 1;

int main () {
L0 = 15;
X0 = Y0 = -L0/2.;
double k = 3.8317/R;
double omega[N][N], psi[N][N];
foreach() {

if (RAD < R)
val (omega, 0, 0) = -k*U*(-2*j1(k*RAD))/(j0(k*R))*SIN_THETA;

else
val (omega, 0, 0) = 0;

val (psi, 0, 0) = 0;
}
max_sweeps = 10000;
poisson (psi, omega);
// Compute inital velocity field
foreach() {

val (ux, 0, 0) = (val(psi, 0, 1) - val(psi, 0, -1))/(2*Delta) - U;
val (uy, 0, 0) = -(val(psi, 1, 0) - val(psi, -1, 0))/(2*Delta);

}
}

We should visually inspect the initialization by looking at the velocity components, and check if the
vorticity in still entirely concentrated in a circular region. Hence we diagnose the vorticity field, reusing
the omega field.
...

val (uy, 0, 0) = -(val(psi, 1, 0) - val(psi, -1, 0))/(2*Delta);
}
output_ppm (ux,"ux.ppm", -U, U);
output_ppm (uy,"uy.ppm", -U, U);
foreach() {

47

val(omega, 0, 0) = -(val(ux, 0, 1) - val(ux, 0, -1))/(2*Delta);
val(omega, 0, 0) += (val(uy, 1, 0) - val(uy, -1, 0))/(2*Delta);

}
output_ppm (omega, "vort.ppm", -U*k, U*k);

}

Compile, run and inspect,
$ gcc -DN=300 lamb.c -lm
$./a.out
Warning: max res = 0.00315803 is greather than its tolerance (0.0001)
$ convert ux.ppm uy.ppm vort.ppm +append xyo.png

After the inevitable syntax-error fixes, we can inspect xyo.png.

Figure 12: For inspection: ux(left), uy (middle) and ω (right)

This looks good and we can setup a time loop,
...

output_ppm (omega, "vort.ppm", -U*k, U*k);

// Time loop
int iter = 0;
double t_end = 2;
for (t = 0; t < t_end; t += dt) {

printf ("# i = %d, t = %g\n", iter, t);
dt = dt_next(t_end);
advance_ns (dt);
iter++;

}
}

To verify if our solution remained steady, we can output the vorticity field at the end of the simulation,
...
iter++;

}
// Output vorticity field
foreach() {

val(omega, 0, 0) = -(val(ux, 0, 1) - val(ux, 0, -1))/(2*Delta);

48

val(omega, 0, 0) += (val(uy, 1, 0) - val(uy, -1, 0))/(2*Delta);
}
char fname[99];
sprintf (fname, "o-%d.ppm", N);
output_ppm (omega, fname, -U*k, U*k);

}

Compile run and check,
$ gcc -O3 lamb.c -lm
$./a.out
...
i = 24, t = 1.7463
i = 25, t = 1.83109
i = 26, t = 1.91627

After a second or two of simulation I increase the resolution a bit and add an annotation whilst
converting it to a .png to show here.
$ convert o-100.ppm -resize 300x300 -pointsize 30\

-annotate +100+70 'N = 100' o-100.png

Figure 13: The result for N = 100

The vortex structure seems to have survived(!) but in a deformed state. We should also check if this
deformation at least decreases if we increase the accuracy of our computations.
$ gcc -DN=200 -O3 lamb.c -lm
$./a.out
...
$ gcc -DN=400 -O3 lamb.c -lm
$./a.out
...

49

Then we prepare our comparison (I did not pit the ampersands ($) so the block below maybe copied
and pasted.
convert o-200.ppm -resize 300x300 -pointsize 30\

-annotate +100+70 'N = 200' o-200.png
convert o-400.ppm -resize 300x300 -pointsize 30\

-annotate +100+70 'N = 400' o-400.png
convert vort.ppm -resize 300x300 -pointsize 30\

-annotate +80+70 'Reference' vort.png
convert o-100.png o-200.png +append o-top.png
convert o-400.png vort.png +append o-bottom.png
convert o-top.png o-bottom.png -append o-2x2.png

The resulting image (o-2x2.png) is shown below,

Figure 14: The obtained vorticity field does seem to match the reference better for larger values of N

I consider this a pass. Notice that this test is far from perfect, it is unclear what the effects of our finite
L0 and the periodic boundaries are. But I do know (from experience) that this test is more critical
than the qualitative test below.

Taylor-Green vortices

We will adhere to the tradition of testing new flow solvers against the Solution of Taylor and Green.
On a periodic domain of size 2π × 2π,

ux = cos(x) sin(y)e−2ν∗t,

50

uy = − cos(y) sin(x)e−2ν∗t.

We will make it more interesting by evaluating it in a moving frame of reference. We will do a
convergence test for the L2 error. Using tg.c,
#include "ns.h"

#define UX (cos(x)*sin(y)*exp(-2*nu*t) + 1)
#define UY (-cos(y)*sin(x)*exp(-2*nu*t) + 1)

int main() {
L0 = 2*3.14159265;
nu = 0.1;
// Initialize
foreach() {

val(ux, 0, 0) = UX;
val(uy, 0, 0) = UY;

}
// Solve until t = 2*pi
double t_end = L0;
int iter = 0;
for (t = 0; t < t_end; t += dt) {

dt = dt_next(t_end);
advance_ns (dt);
iter++;

}
// Compute L2 for ux and uy combined
double L2 = 0;
foreach() {

L2 += sq(Delta)*sq(val(ux, 0, 0) - UX);
L2 += sq(Delta)*sq(val(uy, 0, 0) - UY);

}
printf ("%d %d %g %g\n", N, iter, t, L2);

}

Compile and compare the results
$ gcc -O3 tg.c -lm
$./a.out
100 1592 6.28319 0.18054
$ gcc -O3 -DN=200 tg.c -lm
$./a.out
200 6367 6.28319 0.0581281
$ gcc -O3 -DN=400 tg.c -lm
$./a.out
$ 400 25465 6.28319 0.0166069

Convergence looks OK since 0.18
0.058 ≈

0.058
0.016 ≈ 3.3, which is a quite healthy. Given the the number of

time steps has increases by a factor of 4 with doubling resolution indicates that the viscous term is
most stringent for our time stepping stability. The factor 3.3 is a mix of the accuracy of the dominant
diffusion term (second order accuracy would give a reduction factor of

(400
200

)2 = 4) and the first-order
accuracy for the advection term (

(400
200

)1 = 2). In this case 2 + 4 ≈ 3.3.

The patient among us may want to push a bit more a do N = 800,

51

$ gcc -O3 -DN=800 tg.c -lm
$./a.out
Segmentation fault

This is an error raised by our operating system that does not allow to allocate so much memory for our
fields on the stack. We could tell it to give us more.
$ ulimit -s
8192
// i.e in Kbytes default
$ su
// Enter password
ulimit -s 100000
./a.out

This is not really a good solution. Using malloc is! But this would go against a core design principle
of our solver, namely coding simplicity. Notice that the high-resolution runs are prohibitively expensive
anyway.

Congratulations!
You have wrote a Navier-Stokes equation solver and It is therefore almost time to have some flow-related
fun. First, we should make small improvements to the functionality of our code before we can really
show-off some flow cases in a gallery. Lets code up some more function and an improved user interface.

52

https://craftofcoding.wordpress.com/2015/12/07/memory-in-c-the-stack-the-heap-and-static/
https://pubs.opengroup.org/onlinepubs/007904975/functions/malloc.html

11. Some improved functionalities
In this chapter we will improve our code to increase its function, and improve the user interface. These
points are inspired by my wishes when composing the Gallery chapter. We consider four main topics,

1. An option to solve for a flow tracer field
2. An option for an additional body force to the Navier-Stokes equations
3. A user-interface for the time loop

(1 and 2) A tracer field and a buoyancy field
Since we already have the solving infrastructure, it would be nice to solve for the evolution of a tracer
field as well. It can be implemented by adding a global field in ns.h called tracer and then update
it during the advance_ns() step. Furthermore, it will prove useful to add an additional body-force
momentum-source term to the vertical velocity (e.g. a gravity acceleration force). These two additions
require very little new code to be added in ns.h,
...
double ux[N][N], uy[N][N], p[N][N];
double tracer[N][N], acceleration_y[N][N];
...

void advance_ns (double dt) {
...

advance_scalar (uy_star, nu, dt);
advance_scalar (tracer, kappa, dt);
foreach()

val(uy_star, 0, 0) += dt*val(acceleration_y, 0, 0);
// Project and update
...

That it! See in the Gallery for its usage. But you may not recognize the clean case setup files before
reading about. . .

(3) The User interface
I wish to implement a function called run() which will run the time loop (i.e. for (t = 0; t <
t_end; t += dt)) for our solver. In its not user-friendly form we would add to ns.h,
...

double t_end = 1;

void run() {
for (t = 0; t < t_end; t += dt) {

// advance
dt = dt_next(t_event);
advance_ns(dt);

}

were we could change t_end in our .c-case files to our desire. However, it would be nice
to *optionally* break into this loop and add functions as we please. To illustrate,
one may want to execute some function every iteration, but the function body is only
defined in a later.c‘-case file. A method to do this is to use function pointers.

53

double t_end = 1;
// Function pointer
void (*every_iter)() = NULL;

void run() {
for (t = 0; t < t_end; t += dt) {

if (every_iter != NULL) // Do not excecute an undefined function
every_iter();

// advance
dt = dt_next(t_event);
advance_ns(dt);

}

Using this, one may optionally assign a function to the void every_iter() function pointer in a .c
file. It could look like,
...
void my_fun() {

printf ("%g \n", t);
}

int main () {
...
every_iter = my_fun;
run();

}

This would result in the execution of the void my_fun() function every time step. Printing the value of
the time parameter for every iteration. Similar, I would like functions that execute every iter_interval
iterations (i.e. solver time steps) and every t_interval of time units. The code becomes
...
// Time loop variables
double t_interval = 1e8, t_end = 1;
int iter, iter_interval = 1e8;

// Function pointers
void (*every_t_interval)() = NULL;
void (*every_iter_interval)() = NULL;
void (*every_iter)() = NULL;

// A time loop
void run() {

//(re)set
iter = 0;
t = 0;
// time of next t_interval
double t_event = 0;
for (t = 0; t < t_end; t += dt) {

// Call events if defined
if (every_iter != NULL)

every_iter();
if ((iter % iter_interval) == 0 && every_iter_interval != NULL)

every_iter_interval();

54

if (fabs(t - t_event) < 1e-8) { // Allow small binary-representation error
if (every_t_interval != NULL)

every_t_interval();
// update t_interval
t_event = min(t_end, t_event + t_interval);

}
// advance
dt = dt_next(t_event);
advance_ns(dt);
iter++;

}
}

Finally,
I have added a noise() macro to common.h which computes a random value between -1 and 1.
#include <stdlib.h>
#define noise() ((double)((rand()%2000) - 1000)/1000.)

We will use this for the cases in the gallery

55

12. A gallery of fluid motion
On this page we solve some example flow problems, present their case file (.c) contents and the resulting
movies. For a dummy file case.c the workflow is.
$ FILE=case
$ gcc -O3 -DN=250 $FILE.c -lm
$./a.out
...
$ convert $FILE-*.ppm $FILE.mp4.png
$ rm $FILE-*.ppm

A Kelvin-Helmholtz instability
A shear layer can roll up when it is perturbed. For our case, we consider a jet in the x direction, within
which we initialize a tracer field.

Figure 15: Evolution of the tracer field

#include "ns.h"
#include "visual.h"
// The jet is two-thirds of LO wide
#define JET (fabs(y) < L0/6.)

void output_frame() {
double omega[N][N];
vorticity (omega);
char fname[99];
sprintf (fname, "kh-%04d.ppm", iter);
output_ppm (tracer, fname, -1, 1, false);
// Log progress
printf ("%d %g\n", iter, t);

}

56

int main() {
L0 = 5;
Y0 = -L0/2.;
nu = 2e-4;
t_end = 20;
t_interval = .2;
// Overload function
every_t_interval = output_frame;
// Initialize
foreach() {

val (ux, 0, 0) = JET ? 0.5 : -0.5;
val (uy, 0, 0) += 1e-3*noise();
val (tracer, 0, 0) = JET ? 1. : 0.;

}
// call solver..
run();

}

Decaying two-dimensional turbulence
Two-dimensional turbulence is characterized by a cascade of small vortices towards larger ones over
time. In our case, we initialize a Taylor-Green solution and perturb it such that we can see the unstable
deformation and the resulting chaos.

Figure 16: Evolution of the vorticity field

#include "ns.h"
#include "visual.h"

void output_frame() {
double omega[N][N];

57

vorticity (omega);
char fname[99];
sprintf (fname, "turbulence-%04d.ppm", iter);
output_ppm (omega, fname, -.2, .2, false);
// Log progress
printf ("%d %g\n", iter, t);

}

int main() {
L0 = 2.*pi;
t_end = 500;
t_interval = 2.;
// Overload function
every_t_interval = output_frame;
// Initialize
foreach() {

val (ux, 0, 0) = sin(5*x)*cos(5*y);
val (uy, 0, 0) = -sin(5*y)*cos(5*x);
val (uy, 0, 0) += 0.001*noise();

}
// call solver..
run();

}

Colliding dipolar vortices
Two vortex dipoles can collide and exchange vortices. Instead of following the previous Lamb-Chaplygin
model, we project two localized Gaussian jets, targeted for a head-on collision

Figure 17: Evolution of the vorticity field

58

#include "ns.h"
#include "visual.h"

void output_frame() {
double omega[N][N];
vorticity (omega);
char fname[99];
sprintf (fname, "dip-%04d.ppm", iter);
output_ppm (omega, fname, -.5, .5, false);
// Log progress
printf ("%d %g\n", iter, t);

}

int main() {
L0 = 15;
X0 = Y0 = -L0/2.;
t_end = 50;
t_interval = .5;
// Overload function
every_t_interval = output_frame;
// Initialize
foreach()

val (ux, 0, 0) = exp(-sq(x + 3) - sq(y)) - exp(-sq(x - 3) - sq(y));
projection (ux, uy, p, 1);
// reset p
foreach()

val(p, 0, 0) = 0;
// call solver..
run();

}

Vortex rebound from a wall
A dipole may also find a solid obstacle on its path. A crude way to implement such a condtion is to
prescribe the solution of the stationary wall every timestep.
#include "ns.h"
#include "visual.h"
// The wall is located at the lhs ofthe domain
// such that it appears at the rhs
#define WALL (x < (X0 + L0/10.))

void output_frame() {
double omega[N][N];
vorticity (omega);
char fname[99];
sprintf (fname, "dip-wall-%04d.ppm", iter);
output_ppm (omega, fname, -.1, .1, false);
// Log progress
printf ("%d %g\n", iter, t);

}

59

Figure 18: Evolution of the vorticity field

void boundary() {
foreach() {

if (WALL) {
val (ux, 0, 0) = 0;
val (uy, 0, 0) = 0;

}
}

}

int main() {
L0 = 20;
X0 = Y0 = -L0/2.;
t_end = 250;
t_interval = .5;
nu = 1e-5;
// Overload functions
every_t_interval = output_frame;
every_iter = boundary;
// Initialize
foreach()

val (ux, 0, 0) = exp(-sq(x - 2) - sq(y));
projection (ux, uy, p, 1);
// reset p
foreach()

val(p, 0, 0) = 0;
// call solver..
run();

}

60

Rising warm plume
We can couple a tracer to the acceleration field to describe a buoyancy force with the Boussinesq
approximation. In this case, we initialize a warm (buoyant) Gaussian plume

Figure 19: Evolution of the buoyancy field

#include "ns.h"
#include "visual.h"

void output_frame() {
char fname[99];
sprintf (fname, "plume-%04d.ppm", iter);
output_ppm (tracer, fname, -.1, .1, false);
// Log progress
printf ("%d %g\n", iter, t);

}

void buoyancy() {
foreach()

val(acceleration_y, 0, 0) = val(tracer, 0, 0);
}

int main() {
L0 = 20;
X0 = Y0 = -L0/2.;
t_end = 20;
t_interval = .1;
nu = 1e-5;
// Overload functions
every_t_interval = output_frame;
every_iter = buoyancy;
// Initialize

61

foreach()
val (tracer, 0, 0) = exp(-sq(x) - sq(y + 5));

// call solver..
run();

}

A Rayleigh-Taylor instability
A heavy fluid resting on top of a lighter fluid creates an unstable stratification. Using the Boussinesq
approximation, we initialize a sharp interface between a heavier and a lighter region.

Figure 20: Evolution of the sharp interface, defined as the region with high gradients in the tracer field
(i.e. (∇s)2) from small to larger values displayed as white to blue, respectively

#include "ns.h"
#include "visual.h"

void output_frame() {
double grad[N][N];
foreach() {

val(grad, 0, 0) = sq((val(tracer, 1, 0) - val(tracer, -1, 0))/(2*Delta));
val(grad, 0, 0) += sq((val(tracer, 0, 1) - val(tracer, 0, -1))/(2*Delta));
val(grad, 0, 0) = -(val (grad, 0, 0));

}
char fname[99];
sprintf (fname, "rt-%04d.ppm", iter);
output_ppm (grad, fname, -100, 100, false);
// Log progress
printf ("%d %g\n", iter, t);

}

void buoyancy() {

62

foreach()
val (acceleration_y, 0, 0) = val (tracer, 0, 0);

}

int main() {
L0 = 1;
Y0 = -L0/2.;
t_end = 5;
t_interval = .05;
nu = kappa = 1e-5;
// Overload functions
every_t_interval = output_frame;
every_iter = buoyancy;
// Initialize
double sqN = 1;
foreach() {

val (tracer, 0, 0) = (y < 0 ? L0/2*sqN : - L0/2.*sqN) + sqN*y;
val (uy, 0, 0) = 0.01*noise();

}
// Finding the hydropstatic pressure field requires some addional sweeping
max_sweeps = 1e5;
// call solver..
run();

}

Because I cant help myself. I also discuss the good, the bad and the Ugly of our resulting solver here.

63

13. The good, the bad and the ugly
Here I share some thoughts on our solver design.

The good
I consider minimalism to be a good thing when doing a coding project and since I did my best to
achieve this feature, I do believe our solver is a minimalist design for the functionality put on display
in the gallery. It nicely served to highlight the concepts of the steps typically also tackled by more
useful solvers. Further, I think it helps to better appreciate alternative methods. The user interface is
also relatively good as I do think the codes of the Gallery are quire intuitive.

Another good thing is that we have written our solver in the C programming language. This is a proper
language for high-performance computing and may be the only thing that you could take from this
solver if you are to code a better one.

The bad
Our solver is time inefficient. The discrete approximations are not very accurate and therefore require
relatively small discretization elements (time steps and mesh-element sizes) to achieve an acceptable
solution. To make things worse, our implementation of the Poisson-problem solver is highly inefficient
and the number of required sweeps for a given spatial problem actually increases with the resolution,
making the solver not well behaved. For this reason, virtually none of the choices we have made in this
regard are used in more useful solver designs.

The ugly
We have already encountered the problem where we cannot run our code with a large number of grid
points. Memory allocation for the solution fields on the stack is obviously not the way to go.

In an earlier chapter, I wrote about the modular design of this solver for the purpose of future
improvement. However, if almost every thing needs improving, a complete rewrite makes more sense.

What do other solvers do different?
As mentioned in the introduction, there is no consensus on how to solve flow problems most efficiently
and numerical methods are often developed with a specific type of flow problems in mind. Aside the
from coding details, I will list some solver-design choice alternatives which could have some relevant
depending on the application.

Functions and features

Solvers typically advertise their merits by listing the type of flow problems they can handle. Examples
include; multi-phase flows, flow in complex geometries, coupling to other solvers (multi physics), etc.

Method of Lines

The method of lines, where the mesh only discretizes the spatial dimensions, is often used in any solver
that is not specifically investigating alternatives.

Finite differences

The finite difference method is not particularly unpopular. However, the finite volume method (FVM)
is often preferred for solving problems described by a flux-divergence evolution equation. the FVM is

64

formulated such that the approximate solution to a conservation equation inherits this conservation
property exacty. A second prominent alternative is the finite element method. Apart from the
mathematical rigor and the grid-node layout flexibility, I cant think of many fundamental advantages
for it in this context.

Co-located variables

Virtually all finite difference codes use a staggered grid, where the velocity components are defined at
the faces in between grid cells. In practice, this allows to easily do an exact projection.

Cartesian grid

Our Cartesian grid is excellent for meshing the square domain. However, it would be nice if we could
focus the cells a bit towards the regions of interest. This could be achieved with stretching and squeezing
the mesh, but if you are doing many computations in complex geometries where only certain parts
of the domain require a high resolution, an unstructured mesh would be more flexible. Noting that a
quadtree structure may represent the best of both worlds.

Forward Euler time advancement

The forward Euler method is prone to instabilities and requires many small time steps for an accurate
solution. It can thus become a computationally expensive option. Popular time-advancement schemes
(both ex and implicit) can typically be casted in a Runge-Kutta formulation. Special attention of
often given to the formulations that require least storage in memory. For some reason, linear multistep
methods are also still around.

First-order accurate upwind advection

Although our first-order method has some excellent theoretical properties, the first order accuracy
introduces large (diffusive) errors. There really exists a full zoo of advection-scheme alternatives. I like
to highlight so-called compact numerical schemes as they can have excellent dispersion properties for a
given degree of accuracy.

2nd-order accurate diffusion

This was quite an OK choice, although its explicit stability is a huge issue for viscous problems. For
this reason, there are quite a few solvers that employ a so-called implicit + explicit (IMEX) scheme,
where only the viscous term is treated implicitly.

Iterative Poisson solver

Iterative Poisson solving is often synonymous for also using multigrid acceleration because it does not
really work well without it (as we have seen). Further, the sweeping design can be altered in many ways.
Most notably, under relaxation may help to improve the convergence rate. Apart from the iterative
method, on periodic grids, a (fast) Fourier transform would be a better option. This is often referred to
as a spectral method, and we could actually have done all our differencing approximations in spectral
space. Finally, (direct and indirect) matrix solver are also a popular choice to tackle linear problems.

Chorin’s projection method

Chorin’s projection method is quite popular but other operator splitting methods exist.

65

http://acoustics.ae.illinois.edu/pdfs/lele-1992.pdf
https://en.wikipedia.org/wiki/Multigrid_method

	Code a simple flow solver
	Pre-requisites
	Chapter 0: systems check

	1. The equations for fluid motion
	The goal of a flow solver
	The equations for fluid motion
	The goal of our flow solver

	2. The method of lines
	Practice with an example

	3. Finite differences
	A test for finite differencing
	The code in solver.c is getting messy…

	4. The advection term
	Tracer advection
	Computing the advection term

	5. Antre’acte: Visualization
	The .ppm file format
	Movie maker

	6. Testing the tracer_advection() function
	A qualitative test
	(1) A quantitative test
	(2) A Well-behaved solver?

	7. The viscous term
	A stability criterion
	Testing

	8. Antre’acte: A Poisson-problem solver
	Poisson’s equation
	A numerical solving strategy
	A criterion to stop sweeping
	Solving for \nabla \phi

	9. The pressure-gradient force
	A projection method
	Chorin’s projection method

	10. A Navier-Stokes problem solver
	A time stepping function
	Two tests
	Congratulations!

	11. Some improved functionalities
	(1 and 2) A tracer field and a buoyancy field
	(3) The User interface
	Finally,

	12. A gallery of fluid motion
	A Kelvin-Helmholtz instability
	Decaying two-dimensional turbulence
	Colliding dipolar vortices
	Vortex rebound from a wall
	Rising warm plume
	A Rayleigh-Taylor instability

	13. The good, the bad and the ugly
	The good
	The bad
	The ugly
	What do other solvers do different?

